Regulation of phosphate (Pi) transport and NaPi-III transporter (Pit-1) mRNA in rat osteoblasts.

نویسندگان

  • E Zoidis
  • C Ghirlanda-Keller
  • M Gosteli-Peter
  • J Zapf
  • C Schmid
چکیده

In osteoblasts only the type III Na(+)-dependent phosphate (NaPi) transporter isoforms Pit-1 and Pit-2 have been identified. We tested the effects of extracellular Pi, Ca(2+) and IGF-I on Na(d)Pi transport and Pit-1 or Pit-2 mRNA expression in rat osteoblastic (PyMS) cells. The v(max) of Na(d)Pi transport was higher in cells kept in Pi-free, serum-free medium for 24 h than in controls at 1 mM Pi (2.47+/-0.20 vs 1.83+/-0.17 nmol/mg protein x 10 min). The apparent affinity constant (K(M)) for Pi remained unchanged. Pi withdrawal for 24 h did not impair cell viability whereas increasing the extracellular Pi to 5 mM resulted in cell death. Pit-1 (but not Pit-2) mRNA was upregulated following Pi deprivation, Ca(2+) treatment or after treatment with 1 nM IGF-I, known to stimulate Na(d)Pi transport and cell proliferation. IGF-I also stimulated Na(d)Pi transport and Pit-1 mRNA in primary rat calvarial osteoblasts. Expression of Pit-1 mRNA in vivo and the coordinate regulation of Pit-1 mRNA and Pi transport in osteoblastic cells suggest that Pit-1 is a candidate transporter of physiological relevance in bone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a newly identified phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-like cells and its regulation by insulin-like growth factor I.

The cell surface receptor for gibbon ape leukemia virus (Glvr-1) was recently demonstrated to serve normal cellular functions as a sodium-dependent phosphate (NaPi) transporter. This protein belongs to a newly identified phosphate transporter/retrovirus receptor gene family distinct from renal type I and II NaPi transporters. Although inorganic phosphate (Pi) transport is an important function ...

متن کامل

Differential Regulation of the Renal 1 Sodium / Phosphate Co - Transporters NaPi - IIa , NaPi - IIc 2 and PiT - 2 in Dietary Potassium Deficiency 3

25 Dietary potassium (K)-deficiency is accompanied by phosphaturia, and decreased renal 26 brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (Pi) transport 27 activity. We previously showed that K-deficiency in rats leads to increased abundance in 28 the proximal tubule BBM of the apical Na/Pi co-transporter NaPi-IIa, but that the activity, 29 diffusion and clustering of NaPi-...

متن کامل

Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.

Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of Pi transport across the plasmalemma on Pi toxicity in INS-1E rat clonal β cells and rat pancreatic islet cells. Type III sodium-...

متن کامل

Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate.

Hyperphosphatemia associated with chronic kidney disease is one of the factors that can promote vascular calcification, and intestinal P(i) absorption is one of the pharmacological targets that prevents it. The type II Na-P(i) cotransporter NaPi-2b is the major transporter that mediates P(i) reabsorption in the intestine. The potential role and regulation of other Na-P(i) transporters remain un...

متن کامل

Identification and localization of sodium-phosphate cotransporters in hepatocytes and cholangiocytes of rat liver.

Hepatocytes and cholangiocytes release ATP into bile, where it is rapidly degraded into adenosine and P(i). In rat, biliary P(i) concentration (0.01 mM) is approximately 100-fold and 200-fold lower than in hepatocytes and plasma, respectively, indicating active reabsorption of biliary P(i). We aimed to functionally characterize canalicular P(i) reabsorption in rat liver and to identify the invo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 181 3  شماره 

صفحات  -

تاریخ انتشار 2004